A Few Thoughts on How We May Want to Further Study DNN

Eric Xing
Carnegie Mellon University

Deep Learning is Amazing!!!

Tasks for Which Deep Convolutional Nets are the Best

Y LeCun MA Ranzato

- Handwriting recognition MNIST (many), Arabic HWX (IDSIA)
- OCR in the lild [2011]: StreetView House Numbers (NYU and others)
- Traffic sign econition [2011] GTSRB competition (IDSIA, NYU)
- Pedestrian | et | io | [2013]: INRIA datasets and others (NYU)
- Volumetric lease manage segmentation [2009] connectomics (IDSIA, MIT)
- Human Actic
 e o hit
 20111 Hollywood II dataset (Stanford)
- Object Recognic 20 2] m genet or petition
- Scene Parsin
 2() | San rebut
 ftF w, Barcelona (*YU)
- Scene parsing row dep i ag [[3] NYU RGB-L datiset (NYU)
- Speech Recognition [20] Aco tic nod ing (IBM and Google)
- Breast cancer cell mitosis detection [2011] MITOS (IDSIA)
- The list of perceptual tasks for which ConvNets hold the record is growing.
- Most of these tasks (but not all) use purely supervised convnets.

What makes it work? Why?

An MLer's View of the World

Empirical Performances?

	DL	? ML (e.g., GM)
Empirical goal:	e.g., classification, feature learning	e.g., transfer learning, latent variable inference
Structure:	Graphical	Graphical
Objective:	Something aggregated from local functions	Something aggregated from local functions
Vocabulary:	Neuron, activation/gate function	Variables, potential function
Algorithm:	A single, unchallenged, inference algorithm BP	A major focus of open research, many algorithms, and more to come
Evaluation:	On a black-box score end performance	On almost every intermediate quantity
Implementation:	Many untold-tricks	More or less standardized
Experiments:	Massive, real data (GT unknown)	Modest, often simulated data (GT known)

A slippery slope to mythology?

- How to conclusively determine what an improve in performance could come from:
 - Better model (architecture, activation, loss, size)?
 - Better algorithm (more accurate, faster convergence)?
 - Better training data?
- Current research in DL seem to get everything above mixed by evaluating on a black-box "performance score" that is not directly reflecting
 - Correctness of inference
 - Achievability/usefulness of model
 - Variance due to stochasticity

An Example

Inference quality

- Training error is the old concept of a classifier with no hidden states, no <u>inference</u> is involved, and thus inference accuracy is not an issue
- But a DNN is not just a classifier, some DNNs are not even fully supervised, there are MANY hidden states, why their inference quality is not taken seriously?
- In DNN, inference accuracy = visualizing features
 - Study of inference accuracy is badly discouraged
 - Loss/accuracy is not monitored

Inference/Learning Algorithm, and their evaluation

Learning a GM with Hidden Variables – the thought process

• In fully observed iid settings, the log likelihood decomposes into a sum of local terms (at least for directed models).

$$\ell_c(\theta; D) = \log p(x, z \mid \theta) = \log p(z \mid \theta_z) + \log p(x \mid z, \theta_x)$$

 With latent variables, all the parameters become coupled together via marginalization

$$\ell_c(\theta; D) = \log \sum p(x, z \mid \theta) = \log \sum p(z \mid \theta_z) p(x \mid z, \theta_x)$$

Gradient Learning for mixture models

 We can learn mixture densities using gradient descent on the log likelihood. The gradients are quite interesting:

$$\begin{split} I(\theta) &= \log p(\mathbf{x} \mid \theta) = \log \sum_{k} \pi_{k} p_{k}(\mathbf{x} \mid \theta_{k}) \\ \frac{\partial I}{\partial \theta_{k}} &= \frac{1}{p(\mathbf{x} \mid \theta)} \sum_{k} \pi_{k} \frac{\partial p_{k}(\mathbf{x} \mid \theta_{k})}{\partial \theta_{k}} \\ &= \sum_{k} \frac{\pi_{k}}{p(\mathbf{x} \mid \theta)} p_{k}(\mathbf{x} \mid \theta_{k}) \frac{\partial \log p_{k}(\mathbf{x} \mid \theta_{k})}{\partial \theta_{k}} \\ &= \sum_{k} \pi_{k} \frac{p_{k}(\mathbf{x} \mid \theta_{k})}{p(\mathbf{x} \mid \theta)} \frac{\partial \log p_{k}(\mathbf{x} \mid \theta_{k})}{\partial \theta_{k}} = \sum_{k} r_{k} \frac{\partial I_{k}}{\partial \theta_{k}} \end{split}$$

- In other words, the gradient is aggregated from many other intermediate states
 - Implication: costly iteration, heavy coupling between parameters
- Other issues: imposing constraints, identifiability ...

Then Alternative Approaches Were Proposed

- The EM algorithm
 - M: a convex problem
 - E: approximate constrained optimization
 - · Mean field
 - BP/LBP
 - Marginal polytope

- Spectrum algorithm:
 - redefine intermediate states, convexify the original problem

Eric Xing

Learning a DNN

To compute all the derivatives, we use a backward sweep called the **back-propagation** algorithm that uses the recurrence equation for $\frac{\partial E}{\partial X_i}$

Learning a DNN

In a nutshell, sequentially, and recursively apply:

$$w_{j,i}^{t+1} = w_{j,i}^{t} - \eta_t \delta_j z_i$$
$$\delta_i = h'(a_i) \sum_j \delta_j w_{j,i}$$

 Things can getting hairy when locally defined losses are introduced, e.g., auto-encoder, which breaks a loss-driven global optimization formulation

- Depending on starting point, BP converge or diverge with probability 1
 - A serious problem in Large-Scale DNN

Backprop in Practice

- Use ReLU non-linearities (tanh and logistic are falling out of favor)
- Use cross-entropy loss for classification
- Use Stochastic Gradient Descent on minibatches
- Shuffle the training samples
- Normalize the input variables (zero mean, unit variance)
- Schedule to decrease the learning rate
- Use a bit of L1 or L2 regularization on the weights (or a combination)
 - But it's best to turn it on after a couple of epochs
- Use "dropout" for regularization
 - Hinton et al 2012 http://arxiv.org/abs/1207.0580
- Lots more in [LeCun et al. "Efficient Backprop" 1998]
- Lots, lots more in "Neural Networks, Tricks of the Trade" (2012 edition) edited by G. Montavon, G. B. Orr, and K-R Müller (Springer)

DL

Utility of the network

- A vehicle to conceptually synthesize complex decision hypothesis
 - stage-wise projection and aggregation
- A vehicle for organizing computing operations
 - stage-wise update of latent states
- A vehicle for designing processing steps/computing modules
 - Layer-wise parallization
- No obvious utility in evaluating DL algorithms

Utility of the Loss Function

 Global loss? Well it is non-convex anyway, why bother?

GM

- A vehicle for synthesizing a global loss function from local structure
 - potential function, feature function
- A vehicle for designing sound and efficient inference algorithms
 - Sum-product, mean-field
- A vehicle to inspire approximation and penalization
 - Structured MF, Tree-approx
- A vehicle for monitoring theoretical and empirical behavior and accuracy of inference

A major measure of quality of algorithm and model

An Old Study of DL as GM Learning

[Xing, Russell, Jordan, UAI 2003]

A sigmoid belief network at a GM, and mean-field partitions

Study focused on only inference/learning accuracy, speed, and partition

Now we can ask, with a correctly learned DN, is it doing will on the desired task?

Why A Graphical Model formulation of DL might be fruitful

- Modular design: easy to incorporate knowledge and interpret, easy to integrate feature learning with high level tasks, easy to built on existing (partial) solutions
- Defines an explicit and natural objective
- Guilds strategies for systematic study of inference, parallelization, evaluation, and theoretical analysis
- A clear path to further upgrade:
 - structured prediction
 - Integration of multiple data modality
 - Modeling complex: time series, missing data, online data ...
- Big DL on distributed architectures, where things can get messy everywhere due to incorrect parallel computations

Easy to incorporate knowledge and interpret

Slides Courtesy: Li Deng

Easy to integrate feature learning with high level tasks

Hidden Markov Model

+

Gaussian Mixture Model

Jointly trained, but shallow

Hidden Markov Model

Deep Neural Network

Deep, but separately trained

Hidden Markov Model

Deep Graphical Models

Jointly trained and deep

Distributed DL

Mathematics 101 for ML

$$rg \max_{ec{ heta}} \equiv \mathcal{L}(\{\mathbf{x}_i, \mathbf{y}i\}_{i=1}^N \; ; \; ec{ heta}) + \Omega(ec{ heta})$$
Model Data Parameter

$$\vec{\theta}^{t+1} = \vec{\theta}^t + \Delta_f \vec{\theta}(\mathcal{D})$$

This computation needs to be parallelized!

$$\vec{\theta}^{t+1} = \vec{\theta}^t + \Delta_f \vec{\theta}(\mathcal{D})$$

Toward Big ML

Data-Parallel DNN using Petuum Parameter Server

- Just put global parameters in SSPTable:
- DNN (SGD)
 - The weight table
- Topic Modeling (MCMC)
 - Topic-word table
- Matrix Factorization (SGD)
 - Factor matrices L, R
- Lasso Regression (CD)
 - Coefficients β
- SSPTable supports generic classes of algorithms
 - With these models as examples

Theorem: Multilayer convergence of SSP based distributed DNNs to optima

• If the undistributed BP updates of a multilayer DNN lead to weights W_t , and the distributed BP updates under SSP lead to weights w_t , then w_t converges in probability to W_t , i.e. $(w_t \xrightarrow{P} w_t)$

Consequently
$$(w_t^* \xrightarrow{P} w^*)$$

Model-Parallel DNN using Petuum Scheduler

Theorem: Multilayer convergence of model distributed DNNs to optima

• If the undistributed BP updates of a multi-layer DNN lead to weights W_t and the distributed BP updates in model distributed setting lead to weights w_t , then w_t converges in probability to w_t , i.e. $(w_t \xrightarrow{P} w_t)$. Consequently

$$(w_t^* \xrightarrow{P} w^*)$$

 In case of model distributed DNN we divided the DNN vertically such that a single layer is distributed across processors

Distributed DNN: (preliminary)

- Application: phoneme classification in speech recognition.
- Dataset: TIMIT dataset with 1M samples.
- Network configuration: input layer with 440 units, output layer with 1993 units, six hidden layers with 2048 units in each layer

Methods	PER
Conditional Random Field [1]	34.8%
Large-Margin GMM [2]	33%
CD-HMM [3]	27.3%
Recurrent Neural Nets [4]	26.1%
Deep Belief Network [5]	23.0%
Petuum DNN (Data Partition)	24.95%
Petuum DNN (Model Partition)	25.12%

Conclusion

- In GM: lots of efforts are directed to improving inference accuracy and convergence speed
 - An advanced tutorial would survey dozen's of inference algorithms/ theories, but few use cases on empirical tasks
- In DL: most effort is directed to comparing different architectures and gate functions (based on empirical performance on a downstream task)
 - An advanced tutorial typically consist of a list of all designs of nets,
 many use cases, but a single name of algorithm: back prop of SGD
- The two fields are similar at the beginning (energy, structure, etc.), and soon diverge to their own signature pipelines
- A convergence might be necessary and fruitful